Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(3): 100724, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266916

RESUMO

We propose a pipeline that combines AlphaFold2 (AF2) and crosslinking mass spectrometry (XL-MS) to model the structure of proteins with multiple conformations. The pipeline consists of two main steps: ensemble generation using AF2 and conformer selection using XL-MS data. For conformer selection, we developed two scores-the monolink probability score (MP) and the crosslink probability score (XLP)-both of which are based on residue depth from the protein surface. We benchmarked MP and XLP on a large dataset of decoy protein structures and showed that our scores outperform previously developed scores. We then tested our methodology on three proteins having an open and closed conformation in the Protein Data Bank: Complement component 3 (C3), luciferase, and glutamine-binding periplasmic protein, first generating ensembles using AF2, which were then screened for the open and closed conformations using experimental XL-MS data. In five out of six cases, the most accurate model within the AF2 ensembles-or a conformation within 1 Å of this model-was identified using crosslinks, as assessed through the XLP score. In the remaining case, only the monolinks (assessed through the MP score) successfully identified the open conformation of glutamine-binding periplasmic protein, and these results were further improved by including the "occupancy" of the monolinks. This serves as a compelling proof-of-concept for the effectiveness of monolinks. In contrast, the AF2 assessment score was only able to identify the most accurate conformation in two out of six cases. Our results highlight the complementarity of AF2 with experimental methods like XL-MS, with the MP and XLP scores providing reliable metrics to assess the quality of the predicted models. The MP and XLP scoring functions mentioned above are available at https://gitlab.com/topf-lab/xlms-tools.


Assuntos
Glutamina , Proteínas Periplásmicas , Furilfuramida , Espectrometria de Massas , Conformação Proteica , Proteínas de Membrana
2.
Methods Mol Biol ; 2750: 41-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108966

RESUMO

In this chapter, we describe a method for analyzing both recombinant and plasma-derived alpha 1 antitrypsin and its oligomers by means of native ion mobility mass spectrometry. Our experimental workflow can be applied to other variants of alpha 1 antitrypsin and its oligomers as well as being used to probe their interactions with small molecules in the gas phase.


Assuntos
Espectrometria de Mobilidade Iônica , alfa 1-Antitripsina , alfa 1-Antitripsina/genética , Plasma , Fluxo de Trabalho , Espectrometria de Massas
3.
Proc Natl Acad Sci U S A ; 120(50): e2308933120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064510

RESUMO

The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.


Assuntos
Trifosfato de Adenosina , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 10/química , Dobramento de Proteína , Ligação Proteica
4.
Commun Biol ; 6(1): 968, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740023

RESUMO

In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.


Assuntos
DNA , Histonas , Histonas/genética , DNA/genética , Archaea/genética , Bioensaio , Eucariotos , Polímeros
5.
PLoS Pathog ; 19(3): e1011281, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37000891

RESUMO

During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.


Assuntos
Malária , Plasmodium , Humanos , Transporte Proteico , Proteínas de Protozoários/metabolismo , Plasmodium/metabolismo , Retículo Endoplasmático/metabolismo , Eritrócitos/parasitologia , Malária/metabolismo , Proteínas de Membrana/metabolismo , Plasmodium falciparum/metabolismo
6.
Anal Chem ; 94(46): 16113-16121, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36350278

RESUMO

Native mass spectrometry coupled to ion mobility (IM-MS) combined with collisional activation (CA) of ions in the gas phase (in vacuo) is an important method for the study of protein unfolding. It has advantages over classical biophysical and structural techniques as it can be used to analyze small volumes of low-concentration heterogeneous mixtures while maintaining solution-like behavior and does not require labeling with fluorescent or other probes. It is unclear, however, whether the unfolding observed during collision activation experiments mirrors solution-phase unfolding. To bridge the gap between in vacuo and in-solution behavior, we use unbiased molecular dynamics (MD) to create in silico models of in vacuo unfolding of a well-studied protein, the N-terminal domain of ribosomal L9 (NTL9) protein. We utilize a mobile proton algorithm (MPA) to create 100 thermally unfolded and coulombically unfolded in silico models for observed charge states of NTL9. The unfolding behavior in silico replicates the behavior in-solution and is in line with the in vacuo observations; however, the theoretical collision cross section (CCS) of the in silico models was lower compared to that of the in vacuo data, which may reflect reduced sampling.


Assuntos
Desdobramento de Proteína , Prótons , Simulação de Dinâmica Molecular , Proteínas/química , Íons/química , Conformação Proteica
7.
Cell Rep ; 41(5): 111580, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323248

RESUMO

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset cerebellar ataxia caused by mutations in SACS, which encodes the protein sacsin. Cellular ARSACS phenotypes include mitochondrial dysfunction, intermediate filament disorganization, and progressive death of cerebellar Purkinje neurons. It is unclear why the loss of sacsin causes these deficits or why they manifest as cerebellar ataxia. Here, we perform multi-omic profiling in sacsin knockout (KO) cells and identify alterations in microtubule dynamics and mislocalization of focal adhesion (FA) proteins, including multiple integrins. Deficits in FA structure, signaling, and function can be rescued by targeting PTEN, a negative regulator of FA signaling. ARSACS mice possess mislocalization of ITGA1 in Purkinje neurons and synaptic disorganization in the deep cerebellar nucleus (DCN). The sacsin interactome reveals that sacsin regulates interactions between cytoskeletal and synaptic adhesion proteins. Our findings suggest that disrupted trafficking of synaptic adhesion proteins is a causal molecular deficit in ARSACS.


Assuntos
Ataxia Cerebelar , Camundongos , Animais , Integrinas/genética , Proteínas de Choque Térmico/metabolismo , Ataxia/genética , Mutação
8.
PLoS Pathog ; 18(8): e1010575, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35925870

RESUMO

Human Cytomegalovirus (HCMV) can infect a variety of cell types by using virions of varying glycoprotein compositions. It is still unclear how this diversity is generated, but spatio-temporally separated envelopment and egress pathways might play a role. So far, one egress pathway has been described in which HCMV particles are individually enveloped into small vesicles and are subsequently exocytosed continuously. However, some studies have also found enveloped virus particles inside multivesicular structures but could not link them to productive egress or degradation pathways. We used a novel 3D-CLEM workflow allowing us to investigate these structures in HCMV morphogenesis and egress at high spatio-temporal resolution. We found that multiple envelopment events occurred at individual vesicles leading to multiviral bodies (MViBs), which subsequently traversed the cytoplasm to release virions as intermittent bulk pulses at the plasma membrane to form extracellular virus accumulations (EVAs). Our data support the existence of a novel bona fide HCMV egress pathway, which opens the gate to evaluate divergent egress pathways in generating virion diversity.


Assuntos
Citomegalovirus , Montagem de Vírus , Citoplasma/metabolismo , Humanos , Vírion
9.
J Biol Chem ; 298(6): 102012, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525271

RESUMO

Constitutive activation of the canonical NF-κB signaling pathway is a major factor in Kaposi's sarcoma-associated herpes virus pathogenesis where it is essential for the survival of primary effusion lymphoma. Central to this process is persistent upregulation of the inhibitor of κB kinase (IKK) complex by the virally encoded oncoprotein vFLIP. Although the physical interaction between vFLIP and the IKK kinase regulatory component essential for persistent activation, IKKγ, has been well characterized, it remains unclear how the kinase subunits are rendered active mechanistically. Using a combination of cell-based assays, biophysical techniques, and structural biology, we demonstrate here that vFLIP alone is sufficient to activate the IKK kinase complex. Furthermore, we identify weakly stabilized, high molecular weight vFLIP-IKKγ assemblies that are key to the activation process. Taken together, our results are the first to reveal that vFLIP-induced NF-κB activation pivots on the formation of structurally specific vFLIP-IKKγ multimers which have an important role in rendering the kinase subunits active through a process of autophosphorylation. This mechanism of NF-κB activation is in contrast to those utilized by endogenous cytokines and cellular FLIP homologues.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ativação Enzimática/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Humanos , Quinase I-kappa B/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Oncogênicas/metabolismo , Sarcoma de Kaposi/enzimologia , Sarcoma de Kaposi/virologia , Proteínas Virais/metabolismo
10.
Rapid Commun Mass Spectrom ; 36(13): e9308, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35353398

RESUMO

RATIONALE: Analyte quantitation by mass spectrometry underpins a diverse range of scientific endeavors. The fast-growing field of mass spectrometer development has resulted in several targeted and untargeted acquisition modes suitable for these applications. By characterizing the acquisition methods available on an ion mobility (IM)-enabled orthogonal acceleration time-of-flight (oa-ToF) instrument, the optimum modes for analyte semi-quantitation can be deduced. METHODS: Serial dilutions of commercial metabolite, peptide, or cross-linked peptide analytes were prepared in matrices of human urine or Escherichia coli digest. Each analyte dilution was introduced into an IM separation-enabled oa-ToF mass spectrometer by reversed-phase liquid chromatography and electrospray ionization. Data were acquired for each sample in duplicate using nine different acquisition modes, including four IM-enabled acquisitions modes, available on the mass spectrometer. RESULTS: Five (metabolite) or seven (peptide/cross-linked peptide) point calibration curves were prepared for analytes across each of the acquisition modes. A nonlinear response was observed at high concentrations for some modes, attributed to saturation effects. Two correction methods, one MS1 isotope-correction and one MS2 ion intensity-correction, were applied to address this observation, resulting in an up to twofold increase in dynamic range. By averaging the semi-quantitative results across analyte classes, two parameters, linear dynamic range (LDR) and lower limit of quantification (LLOQ), were determined to evaluate each mode. CONCLUSION: A comparison of the acquisition modes revealed that data-independent acquisition and parallel reaction monitoring methods are most robust for semi-quantitation when considering achievable LDR and LLOQ. IM-enabled modes exhibited sensitivity increases, but a simultaneous reduction in dynamic range required correction methods to recover. These findings will assist users in identifying the optimum acquisition mode for their analyte quantitation needs, supporting a diverse range of applications and providing guidance for future acquisition mode developments.


Assuntos
Escherichia coli , Peptídeos , Calibragem , Humanos , Espectrometria de Massas/métodos
11.
Biochim Biophys Acta Proteins Proteom ; 1870(3): 140759, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051665

RESUMO

Human Histone Deacetylase 2 (HDAC2) belongs to a conserved enzyme superfamily that regulates deacetylation inside cells. HDAC2 is a drug target as it is known to be upregulated in cancers and neurodegenerative disorders. It consists of globular deacetylase and C-terminus intrinsically-disordered domains [1-3]. To date, there is no full-length structure of HDAC2 available due to the high intrinsic flexibility of its C-terminal domain. The intrinsically-disordered domain, however, is known to be important for the enzymatic function of HDAC2 [1, 4]. Here we combine several structural Mass Spectrometry (MS) methodologies such as denaturing, native, ion mobility and chemical crosslinking, alongside biochemical assays and molecular modelling to study the structure and dynamics of the full-length HDAC2 for the first time. We show that MS can easily dissect heterogeneity inherent within the protein sample and at the same time probe the structural arrangement of the different conformers present. Activity assays combined with data from MS and molecular modelling suggest how the structural dynamics of the C-terminal domain, and its interactions with the catalytic domain, regulate the activity of this enzyme.


Assuntos
Histona Desacetilase 2/química , Espectrometria de Massas/métodos , Modelos Moleculares , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Histona Desacetilase 2/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectrometria de Mobilidade Iônica/métodos , Estrutura Molecular
12.
Chem Rev ; 122(8): 7952-7986, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506113

RESUMO

Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Biologia , Substâncias Macromoleculares , Espectrometria de Massas/métodos , Conformação Proteica
13.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469738

RESUMO

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Assuntos
Encéfalo/enzimologia , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/enzimologia , Enzimas Multifuncionais/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Ligação Competitiva , Encéfalo/patologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
14.
J Am Soc Mass Spectrom ; 32(6): 1545-1552, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34006100

RESUMO

Ion mobility coupled to mass spectrometry (IM-MS) is widely used to study protein dynamics and structure in the gas phase. Increasing the energy with which the protein ions are introduced to the IM cell can induce them to unfold, providing information on the comparative energetics of unfolding between different proteoforms. Recently, a high-resolution cyclic IM-mass spectrometer (cIM-MS) was introduced, allowing multiple, consecutive tandem IM experiments (IMn) to be carried out. We describe a tandem IM technique for defining detailed protein unfolding pathways and the dynamics of disordered proteins. The method involves multiple rounds of IM separation and collision activation (CA): IM-CA-IM and CA-IM-CA-IM. Here, we explore its application to studies of a model protein, cytochrome C, and dimeric human islet amyloid polypeptide (hIAPP), a cytotoxic and amyloidogenic peptide involved in type II diabetes. In agreement with prior work using single stage IM-MS, several unfolding events are observed for cytochrome C. IMn-MS experiments also show evidence of interconversion between compact and extended structures. IMn-MS data for hIAPP shows interconversion prior to dissociation, suggesting that the certain conformations have low energy barriers between them and transition between compact and extended forms.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/química , Citocromos c/química , Espectrometria de Massas/métodos , Desdobramento de Proteína , Animais , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Citocromos c/metabolismo , Gases/química , Cavalos , Humanos , Espectrometria de Mobilidade Iônica/métodos , Íons
15.
Nat Commun ; 12(1): 2424, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893293

RESUMO

Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Fast Endophilin-mediated endocytosis, FEME, is not constitutively active but triggered upon receptor activation. High levels of growth factors induce spontaneous FEME, which can be suppressed upon serum starvation. This suggested a role for protein kinases in this growth factor receptor-mediated regulation. Using chemical and genetic inhibition, we find that Cdk5 and GSK3ß are negative regulators of FEME. They antagonize the binding of Endophilin to Dynamin-1 and to CRMP4, a Plexin A1 adaptor. This control is required for proper axon elongation, branching and growth cone formation in hippocampal neurons. The kinases also block the recruitment of Dynein onto FEME carriers by Bin1. As GSK3ß binds to Endophilin, it imposes a local regulation of FEME. Thus, Cdk5 and GSK3ß are key regulators of FEME, licensing cells for rapid uptake by the pathway only when their activity is low.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Quinase 5 Dependente de Ciclina/genética , Endocitose/genética , Glicogênio Sintase Quinase 3 beta/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Clatrina/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Dinamina I/genética , Dinamina I/metabolismo , Regulação da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA
16.
Hum Vaccin Immunother ; 17(3): 747-758, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32897798

RESUMO

The manufacture of the UK Anthrax vaccine (AVP) focuses on the production of Protective Antigen (PA) from the Bacillus anthracis Sterne strain. Although used for decades, several of AVP's fundamental properties are poorly understood, including its exact composition, the extent to which proteins other than PA may contribute to protection, and whether the degree of protection varies between individuals.This study involved three innovative investigations. Firstly, the composition of AVP was analyzed using liquid chromatography tandem mass-spectrometry (LC-MS/MS), requiring the development of a novel desorption method for releasing B. anthracis proteins from the vaccine's aluminum-containing adjuvant. Secondly, computational MHC-binding predictions using NetMHCIIpan were made for the eight most abundant proteins of AVP, for the commonest HLA alleles in multiple ethnic groups, and for multiple B. anthracis strains. Thirdly, antibody levels and toxin neutralizing antibody (TNA) levels were measured in sera from AVP human vaccinees for both PA and Lethal Factor (LF).It was demonstrated that AVP is composed of at least 138 B. anthracis proteins, including PA (65%), LF (8%) and Edema Factor (EF) (3%), using LC-MS/MS. NetMHCIIpan predicted that peptides from all eight abundant proteins are likely to be presented to T cells, a pre-requisite for protection; however, the number of such peptides varied considerably between different HLA alleles.These analyses highlight two important properties of the AVP vaccine that have not been established previously. Firstly, the effectiveness of AVP within humans may not depend on PA alone; there is compelling evidence to suggest that LF has a protective role, with computational predictions suggesting that additional proteins may be important for individuals with specific HLA allele combinations. Secondly, in spite of differences in the sequences of key antigenic proteins from different B. anthracis strains, these are unlikely to affect the cross-strain protection afforded by AVP.


Assuntos
Vacinas contra Antraz , Antraz , Imunogenicidade da Vacina , Antraz/prevenção & controle , Vacinas contra Antraz/imunologia , Anticorpos Antibacterianos , Antígenos de Bactérias/genética , Bacillus anthracis , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem , Reino Unido
17.
Biochem Soc Trans ; 48(6): 2457-2466, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33336686

RESUMO

Ion Mobility (IM) coupled to mass spectrometry (MS) is a useful tool for separating species of interest out of small quantities of heterogenous mixtures via a combination of m/z and molecular shape. While tandem MS instruments are common, instruments which employ tandem IM are less so with the first commercial IM-MS instrument capable of multiple IM selection rounds being released in 2019. Here we explore the history of tandem IM instruments, recent developments, the applications to biological systems and expected future directions.


Assuntos
Espectrometria de Mobilidade Iônica/instrumentação , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Biofísica/história , Biofísica/tendências , Técnicas de Química Analítica/história , Técnicas de Química Analítica/tendências , Desenho de Equipamento , História do Século XX , História do Século XXI , Espectrometria de Mobilidade Iônica/tendências , Íons , Espectrometria de Massas em Tandem/tendências
18.
Structure ; 28(11): 1259-1268, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33065067

RESUMO

Cross-linking mass spectrometry (MS) has substantially matured as a method over the past 2 decades through parallel development in multiple labs, demonstrating its applicability to protein structure determination, conformation analysis, and mapping protein interactions in complex mixtures. Cross-linking MS has become a much-appreciated and routinely applied tool, especially in structural biology. Therefore, it is timely that the community commits to the development of methodological and reporting standards. This white paper builds on an open process comprising a number of events at community conferences since 2015 and identifies aspects of Cross-linking MS for which guidelines should be developed as part of a Cross-linking MS standards initiative.


Assuntos
Reagentes de Ligações Cruzadas/química , Espectrometria de Massas/métodos , Proteínas/ultraestrutura , Proteômica/métodos , Guias como Assunto , Humanos , Cooperação Internacional , Espectrometria de Massas/instrumentação , Espectrometria de Massas/normas , Conformação Proteica , Mapeamento de Interação de Proteínas/métodos , Proteômica/instrumentação , Proteômica/normas , Reprodutibilidade dos Testes
19.
Sci Rep ; 10(1): 18517, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116184

RESUMO

Alzheimer's disease (AD), the most prevalent form of dementia, is a progressive and devastating neurodegenerative condition for which there are no effective treatments. Understanding the molecular pathology of AD during disease progression may identify new ways to reduce neuronal damage. Here, we present a longitudinal study tracking dynamic proteomic alterations in the brains of an inducible Drosophila melanogaster model of AD expressing the Arctic mutant Aß42 gene. We identified 3093 proteins from flies that were induced to express Aß42 and age-matched healthy controls using label-free quantitative ion-mobility data independent analysis mass spectrometry. Of these, 228 proteins were significantly altered by Aß42 accumulation and were enriched for AD-associated processes. Network analyses further revealed that these proteins have distinct hub and bottleneck properties in the brain protein interaction network, suggesting that several may have significant effects on brain function. Our unbiased analysis provides useful insights into the key processes governing the progression of amyloid toxicity and forms a basis for further functional analyses in model organisms and translation to mammalian systems.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Fragmentos de Peptídeos/metabolismo , Mapas de Interação de Proteínas/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/fisiologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Estudos Longitudinais , Neurônios/metabolismo , Fragmentos de Peptídeos/fisiologia , Proteômica/métodos
20.
Anal Chem ; 92(16): 10881-10890, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32649184

RESUMO

The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...